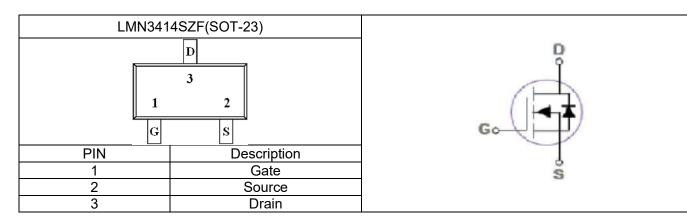


LM3414S 20V N-Channel Enhancement Mode MOSFET

Features

- 20V/5.8A, $R_{DS(ON)}$ =25m Ω @ V_{GS} =4.5V
- Super high density cell design for extremely low R_{DS (ON)}
- Exceptional on-resistance and maximum DC current capability
- SOT-23 package design

Product Description


LMN3414S, N-Channel enhancement mode MOSFET, uses Advanced Trench Technology to provide excellent R_{DS(ON)}, low gate charge.

These devices are particularly suited for low voltage power management, such as smart phone and notebook computer and other battery powered circuits, and low in-line power loss are needed in commercial industrial surface mount applications.

Applications

- Portable Equipment
- Battery Powered System
- Net Working System

Pin Configuration

LMN3414S

Ordering Information

Ordering Information						
Part Number	P/N	PKG code	Pb Free code	Package	Quantity	
LMN3414SZF	LMN3414S	Z	F	SOT-23	3000 PCS	

Marking Information

Marking Information					
Part Marking	Part Marking Part Number LFC code				
14XW	14	XW			

Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Parameter		Typical	Unit
V _{DS}	Drain-Source Voltage	9		20	V
V_{GS}	Gate-Source Voltage	Gate-Source Voltage			V
1_	Continuous Drain Cu	Continuous Drain Current ($T_J=150^{\circ}$ C) $\frac{T_A=25}{T_A=10}$		5.8	Α
I D	Continuous Diain Cu	ilelit (1J–150 C)	T _A =100°C	3.7	A
I _{DM}	Pulsed ¹ Drain Curren			23.2	A
P_{D}	Power Discipation	T _A =25°C		1.56	W
	Power Dissipation	T _A =25°C		0.012	W/ °C
TJ	Operating Junction T	Operating Junction Temperature		-55 to +150	°C
T _{STG}	Storage Temperature	Storage Temperature Range			°C
R _{0JA}	Thermal Resistance-	Junction to Ambi	ent	80	°C/W

LMN3414S 2

Electrical Characteristics

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Conditions	Mi n	Тур	Max	Unit	
Static							
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V_{GS} =0V, I_D =250uA	20			V	
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , ID=250Ua	0.4	0.6	0.8	V	
. ,	V _{GS(th)} Temperature Coefficient			2		mV/ ºC	
∆BVDSS/ ∆TJ	BVDSS Temperature Coefficient	Reference to 25 °C, ID=1mA		0.02		V/ºC	
I_{GSS}	Gate Leakage Current	V_{DS} =0V, V_{GS} =±10V			±100	nA	
	Zoro Cato Voltago Drain Current	V _{DS} =16V, V _{GS} =0V T _J =25°C			1	uA	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =16V, V _{GS} =0V T _J =85°C			10	uA	
		V _{GS} =4.5V, ID=4A		20	25		
$R_{DS(on)}$	Drain-Source On-Resistance	V _{GS} =2.5V, ID=3A		27	35	mΩ	
		V _{GS} =1.8V, ID=2A		39	55		
g FS	Forward Transconductance	V _{DS} =10V, ID=3A		6.5		S	
Dynamic							
Is	Continuous Source Current	VD=VG=DV, Force			5.8	Α	
I _{SM}	Pulsed Source Current	Current			23.2	A	
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V, TJ=25°C			1	V	
Q_g	Total Gate Charge ^{2,3}	V _{DS} =10V, V _{GS} =4.5V,		7.7	11		
Q_gs	Gate-Source Charge ^{2,3}	$I_D=4A$		0.9	1	nC	
Q_gd	Gate-Drain Charge ^{2,3}	10-4/4		2.4	5		
C_{iss}	Input Capacitance	V _{DS} =10V, V _{GS} =0V,		535	775	pF	
Coss	Output Capacitance	f=1MHz		60	85		
C_{rss}	Reverse Transfer Capacitance	1-1101112		34	50		
$t_{d(on)}$	Turn-On Time ^{2,3}			4.1	8	ns	
t _r	Turr-Or Time	V_{DD} =10V, R_L =25 Ω ,		11.6	22		
$t_{d(off)}$	Turn-Off Time ^{2,3}	I _D =1A, V _{GS} =4.5V,		23.9	45		
t _f	Tuiti-Oil Tillie			7.6	14		

Note:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%.
- 3. Essentially independent of operating temperature.

Typical Performance Characteristics

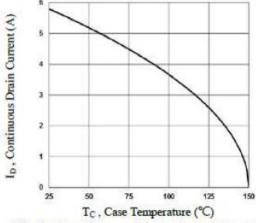


Fig.1 Continuous Drain Current vs. Tc

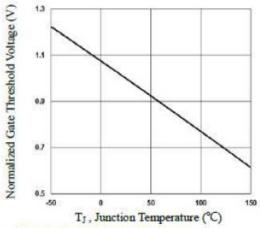


Fig.3 Normalized V_{th} vs. T_J

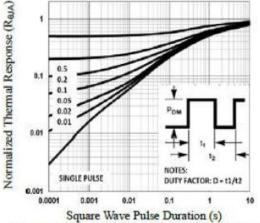


Fig.5 Normalized Transient Impedance

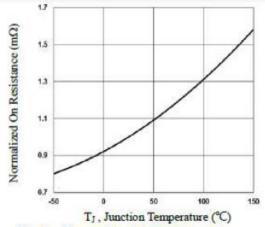


Fig.2 Normalized RDSON vs. T,

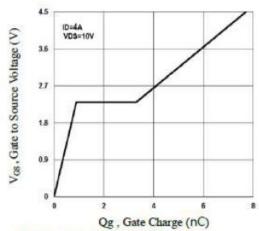


Fig.4 Gate Charge Waveform

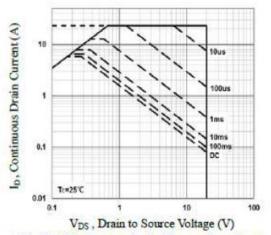
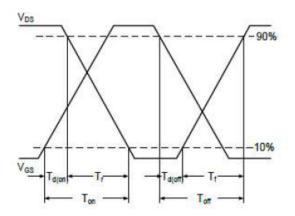



Fig.6 Maximum Safe Operation Area

Typical Performance Characteristics(continue)

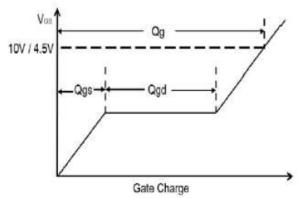
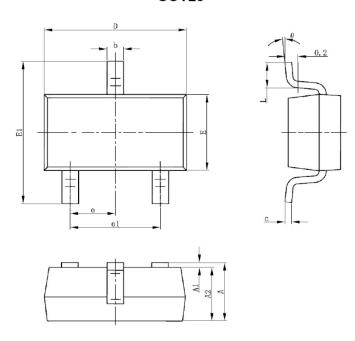



Fig.8 Gate Charge Waveform

Package Dimension:

SOT23

	Dimensions					
Cymphol	Millir	neters	Inches			
Symbol	Min	Max	Min	Max		
Α	0.900	1.200	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.100	0.035	0.039		
b	0.300	0.500	0.012	0.020		
С	0.080	0.150	0.003	0.006		
D	2.800	3.000	0.110	0.118		
E	1.200	1.400	0.047	0.055		
E1	2.250	2.550	0.089	0.100		
е	0.950TYP		0.037TYP			
e1	1.800	2.000	0.071	0.079		
L	0.550REF		0.022REF			
L1	0.300	0.500	0.012	0.020		
θ	0°	8°	0°	8°		

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.