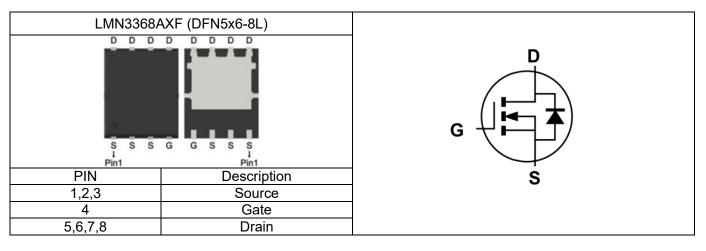


LMN3368AXF 30V N-Channel Enhancement Mode MOSFETs

Features

- R_{DS(ON)} =6mΩ @ V_{GS}=10V
- R_{DS(ON)} =9.8mΩ @ V_{GS}=4.5V
- DFN5x6-8L Package


Product Description

The N-Channel enhancement mode power field effect transistor is using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

The device is well suited for high efficiency fast switching applications.

Applications

- MB / VGA / Vcore
- POL
- SMPS 2nd SR

LMN3368AXF Notice: The information in this document is subject to change without notice.

Pin Configuration

Ordering Information

Part Number	Part Marking	Package	Quantity	
LMN3368AXF	3368AXF	DFN5x6-8L	3000 PCS	

Marking Information

Part Marking	Package Code	Green Level:	Product Code:
3368AXF	1 is X for SOP-8	2 is F for RoHS Compliant and Halogen Free	LMN3368AXF

Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

Symbol	Parameter		Typical	Unit
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
1_	Continuous Drain Current	TA=25°C	70	Α
ID		T _A =100°C	45	A
I _{DM}	Pulsed Drain Current ²	2	180	A
I _{AS}	Single Pulse Avalanche Current, L = 0.5mH ³		12	A
E _{AS}	Single Pulse Avalanch	he Energy, L = 0.5mH ³	72	mJ
PD	Power Dissipation ⁴	T _A =25⁰C	58	W
гD		T _A =100°C	22	٧V
TJ	Operating Junction Temperature		-55 to +150	°C
T _{STG}	Storage Temperature Range		-55 to +150	°C
R _{θJA}	Thermal Resistance-Junction to Case ¹		2.1	°C/W

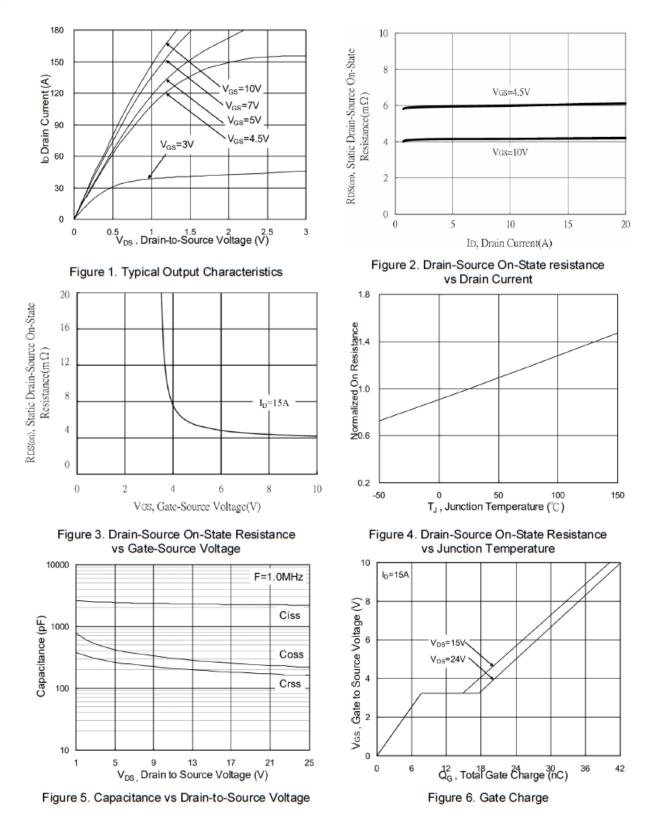
Note:

1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2oz copper.

2. The data tested by pulsed, pulse width \leqslant 300us, duty cycle \leqslant 2%.

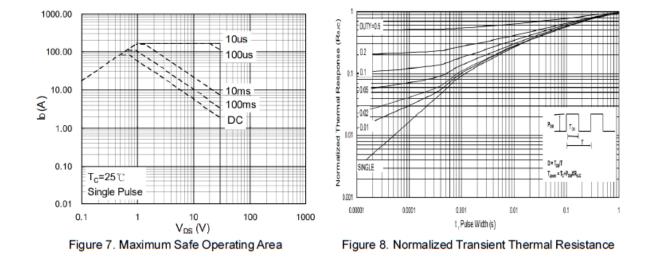
3. EAS ratings are based on low frequency and duty cycles to keep TJ=+25°C.

4. The power dissipation is limited by 150°C junction temperature.

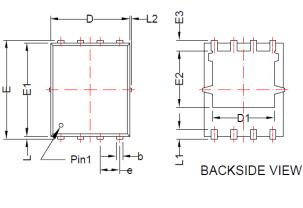

Electrical Characteristics

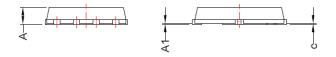
(T_C=25°C Unless otherwise noted)

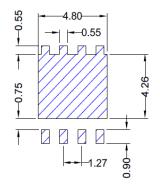
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
Static							
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30			V	
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , ID=250uA	1.2		2.5	v	
I _{GSS}	Gate Leakage Current	$V_{DS}=0V, V_{GS}=\pm 20V$			±100	nA	
DSS	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V			1	uA	
D	Drain-Source On-Resistance	V _{GS} =10V, I _D =15A		4.2	6	m0	
$R_{DS(on)}$	Drain-Source On-Resistance	V _{GS} =4.5V, I _D =10A		5.6	9.8	mΩ	
V_{SD}	Diode Forward Voltage	I _S =20A, V _{GS} =0V			1.2	V	
		Dynamic					
Qg	Total Gate Charge			39		nC	
Q_gs	Gate-Source Charge	V _{DS} =15V, V _{GS} =10V,		7.6			
Q _{gd}	Gate-Drain Charge	I _D =15A		7.2			
Ciss	Input Capacitance		-0)/				
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V, f=1MHz		267		pF	
Crss	Reverse Transfer Capacitance			210			
t _{d(on)}	Turre On Tirese			7.8			
tr	Turn-On Time	V _{DD} =15V, I _D =15A,		15			
$t_{d(off)}$	Turne Off Time e	V _{GS} =10V, R _G =3.3Ω		37		ns	
t _f	- Turn-Off Time		11				
R _g	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		1.7		Ω	



Typical Performance Characteristics


Typical Performance Characteristics(continue)




DFN5x6-8L

Package Dimension

Recommended Land Pattern

Dimensions						
Symphol	Millimeters		Inches			
Symbol	Min	Max	Min	Max		
Α	0.80	1.20	0.031	0.047		
A1	0.00	0.05	0.000	0.002		
b	0.25	0.51	0.010	0.020		
С	0.20	0.35	0.008	0.014		
D	4.90	5.40	0.193	0.213		
D1	3.40	4.60	0.134	0.181		
E	5.90	6.20	0.232	0.244		
E1	5.40	5.90	0.213	0.232		
E2	3.20	3.80	0.126	0.150		
E3	0.40	0.80	0.016	0.031		
e	1.27BSC		0.050BSC			
L	0.10	0.25	0.004	0.010		
L1	0.45	0.75	0.018	0.030		
L2	-	0.15	-	0.006		

NOTE:

DIMENSION D AND E1 DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL HOT EXCEED 0.5mm PER INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.5mm PER SIDE.

LMN3368AXF

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.