

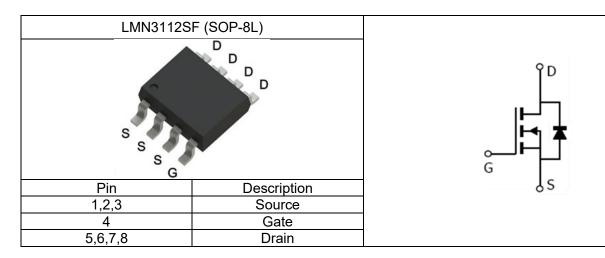
LMN3112S 30V N-Channel MOSFET

Features

- 30V, 10.6A, $R_{DS(ON)}=12m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- 100% EAS guaranteed
- Green Device Available

Product Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has


been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

These devices are well suited for high efficiency fast switching applications.

Applications

- MB / VGA / Vcore
- DC-DC Converters
- Power Management Functions

Pin Configuration

Ordering Information

Ordering Information						
Part Number	P/N	PKG code	Pb Free code	Package	Quantity	
LMN3112SF	LMN3112	S	F	SOP-8	4000 PCS	

Marking Information

Marking Information				
Part Marking	Part Number	LFC code		
3112S XWMMMM	3112S	XWMMMM		

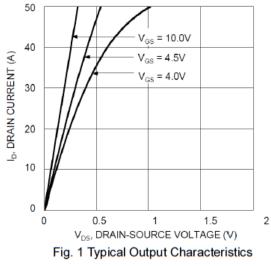
Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

Symbol	Parameter		Typical	Unit
V_{DS}	Drain-Source Voltage	Drain-Source Voltage		V
V_{GS}	Gate-Source Voltage	Gate-Source Voltage		V
	Continuous Drain	T _A =25°C	10.6	
I_D	Current (T _J =150°C)	T _A =75°C	8.5	Α
		T _C =25°C	16	
I _{DM}	Pulsed Drain Current	Pulsed Drain Current ¹		А
E _{AS}	Single Pulse Avalanc	Single Pulse Avalanche Energy ²		
	Power Dissipation	T _A =25°C	2.1	
P_D		T _A =75°C	1.4	W
		T _C =25°C	5	
TJ	Operating Junction To	Operating Junction Temperature		°C
T _{STG}	Storage Temperature Range		-55 to +150	°C
$R_{\theta JA}$	Thermal Resistance-	Thermal Resistance-Junction to Ambient		°C/W
$R_{ heta JC}$	Thermal Resistance-Junction to Case		25	°C/W

Electrical Characteristics

(T_C=25°C Unless otherwise noted)


Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	Static						
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V_{GS} =0V, I_D =250uA	30			V	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	1.2		2.5	V	
I_{GSS}	Gate Leakage Current	V_{DS} =0V, V_{GS} =±20V			±100	nΑ	
I_{DSS}	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V			1	uA	
D	Drain-Source On-Resistance ³	V_{GS} =10V, I_D =10A		9.8	12	mΩ	
$R_{DS(on)}$	Dialii-Source Oil-Resistance	V_{GS} =4.5 V , I_{D} =5 A		15.7	18		
g FS	Forward Transconductance	V_{DS} =10V, I_{D} =3A			10	S	
V _{SD}	Diode Forward Voltage ³	I _S =1A, V _{GS} =0V		0.7	1	V	
	-	Dynamic					
Qg	Total Gate Charge ^{3,4}	\/ -45\/ \/ -45\/		8		nC	
Q_gs	Gate-Source Charge ^{3,4}	V_{DS} =15V, V_{GS} =4.5V,		4			
Q_{gd}	Gate-Drain Charge ^{3,4}	I _D =12.5A		2			
C _{iss}	Input Capacitance	\/ -15\/ \/ -0\/		1040			
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V, f=1MHz		445		pF	
C _{rss}	Reverse Transfer Capacitance	I— IIVIMZ		40			
t _{d(on)}	Turn-On Time ^{3,4}			10			
t _r	Rise Time ^{3,4}	V_{DD} =15V, I_{D} =12.5A,		9		20	
t _{d(off)}	Turn-Off Time ^{3,4}	V_{GS} =10V, R_{G} =6 Ω		24		ns	
t _f	Fall Time ^{3,4}			8			
R _g	Gate Resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		1		Ω	

Note:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. VDD=15V, VGS=10V, L=0.1mH, IAS=13A, Starting TJ=25°C.
- 3. The data tested by pulsed , pulse width \leqq 300us , duty cycle \leqq 2%.
- 4. Essentially independent of operating temperature.

Typical Performance Characteristics

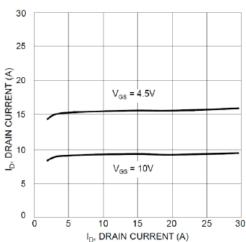


Fig. 3 Typical On-Resistance vs ID and VGS

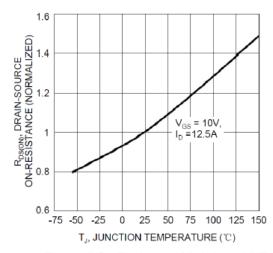


Figure. 5 On-Resistance Variation with TJ

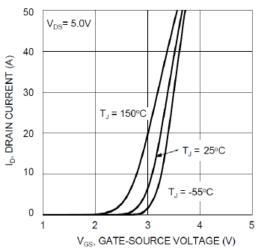


Fig. 2 Typical Transfer Characteristics

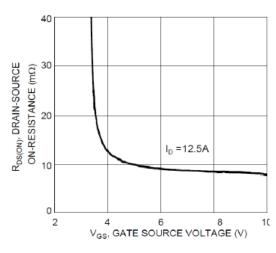


Fig. 4 Typical Transfer Characteristic

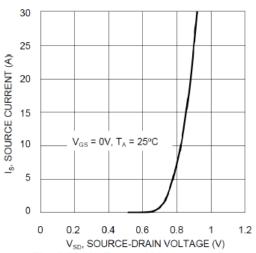


Fig. 6 Diode Forward Voltage vs. Current

Typical Performance Characteristics(continue)

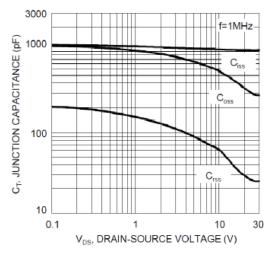


Fig. 7 Typical Capacitance

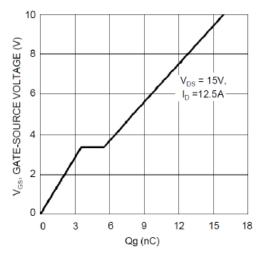
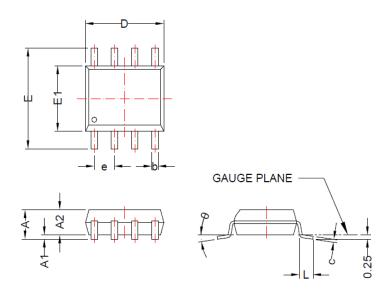



Fig. 8 Gate Charge

Package Dimension:

SOP-8

DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER END.

	Dimensions				
Combal	Millimeters		Inches		
Symbol	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A1	0.10	0.25	0.004	0.010	
A2	1.25	-	0.049	-	
b	0.31	0.51	0.012	0.020	
С	0.10	0.26	0.004	0.010	
D	4.70	5.10	0.185	0.201	
E	5.80	6.20	0.228	0.244	
E1	3.70	4.10	0.146	0.161	
е	1.27 BSC		0.050 BSC		
L	0.4	1.27	0.016	0.050	
θ	0°	8°	0°	8°	

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.