

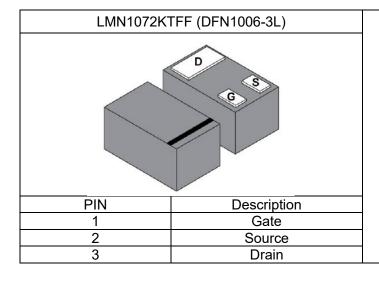
LMN1072KTFF 20V N-Channel Enhancement Mode MOSFET

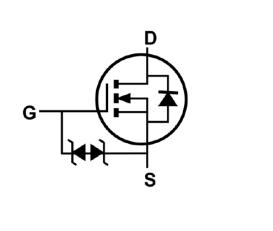
Features

- $R_{DS(ON)} = 350 \text{m}\Omega @V_{GS} = 4.5V$
- $R_{DS(ON)} = 450 \text{m}\Omega @V_{GS} = 2.5V$
- $R_{DS(ON)} = 700 \text{m}\Omega @V_{GS} = 1.8V$
- $R_{DS(ON)} = 1200 \text{m} \Omega @V_{GS} = 1.5 \text{V}$
- ESD Protected
- DFN1006-3L Package design

Product Description

LMN1072 KTFF, N-Channel enhancement mode MOSFET, uses Advanced Trench Technology to provide excellent RDS(ON), low gate charge.


The device is particularly suited for low voltage


power management, such as smart phone and notebook computer, and low in-line power loss are needed in commercial industrial surface mount applications.

Applications

- Power Management in Notebook
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC
- LCD Display inverter

Pin Configuration

Ordering Information

Ordering Information						
Part Number	Part Number P/N		Pb Free code	Package	Quantity	
LMN1072KTFF	LMN1072K	TF	F	DFN1006-3L	10,000 PCS	

Marking Information

Marking Information					
Part Marking	Part Number	LFC code			
2XWM	2	XWM			

Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Typical	Unit
V_{DSS}	Drain-Source Voltage	20	V
V_{GSS}	Gate-Source Voltage	±10	V
I _D	Continuous Drain Current (TJ=150°C)	0.75	A
I _{DM}	Pulsed Drain Current	3.0	A
I _S	Continuous Source Current (Diode Conduction)	0.3	A
P_D	Power Dissipation	0.35	W
TJ	Operating Junction Temperature	-55 to +150	°C
T _{STG}	Storage Temperature Range	-55 to +150	$^{\circ}$

Electrical Characteristics

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
Static								
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =250 u A	20	ı	-	٧		
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , ID=250uA	0.3	ı	1	٧		
I_{GSS}	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =±10V	-	ı	±10	uA		
	Zero Gate Voltage Drain Current	V_{DS} =20V, V_{GS} =0V	-	-	1			
I _{DSS}		V_{DS} =20V, V_{GS} =0V T_{J} =85°C	-	-	30	uA		
		V _{GS} =4.5V, ID=0.5A	-	210	350	mΩ		
D	Drain Source On Registance	V _{GS} =2.5V, ID=0.4A	-	300	450			
$R_{DS(on)}$	Drain-Source On-Resistance	V _{GS} =1.8V, ID=0.2A	-	420	700			
		V _{GS} =1.5V, ID=0.1A	-	600	1200			
g FS	Forward Transconductance	V _{DS} =10V, ID=0.4A	-	1.0	-	S		
V_{SD}	Diode Forward Voltage	I _S =0.15A, V _{GS} =0V	-	8.0	1.2	V		
	Dynamic							
Q_{g}	Total Gate Charge	\/=10\/_\/=1.5\/		0.73				
Q_gs	Gate-Source Charge	V_{DS} =10V, V_{GS} =4.5V, I_{D} =0.25A		0.93		nC		
Q_gd	Gate-Drain Charge	ID-0.23A		0.12				
C_{iss}	Input Capacitance	\/ -16\/ \/ -0\/		60.7		pF		
C_{oss}	Output Capacitance	V_{DS} =16V, V_{GS} =0V, f=1MHz		9.7				
C _{rss}	Reverse Transfer Capacitance	I−IIVI⊓Z		5.4				
$t_{d(on)}$	Turn-On Delay Time	\/ -10\/ D -170		5.1				
t _r	Turn-On Rise Time	$V_{DD}=10V, R_{L}=47\Omega,$		7.4		no		
$t_{d(off)}$	Turn-Off Delay Time	I_D =0.2A, V_{GS} =4.5V, R_G =10 Ω		26.7		ns		
t _f	Turn-Off Fall Time	17G-1022		12.3				

Typical Performance Characteristics

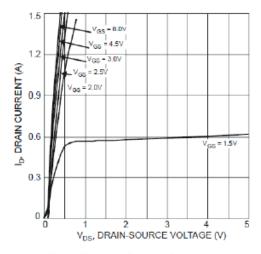


Fig. 1 Typical Output Characteristics

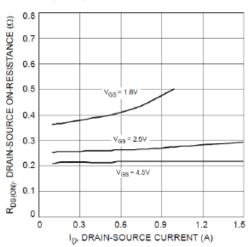


Fig. 3 Typical On-Resistance vs. ID and VGS

Fig. 5 On-Resistance Variation with T_J

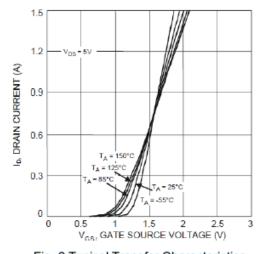


Fig. 2 Typical Transfer Characteristics

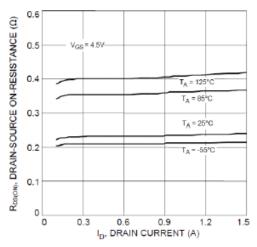


Fig. 4 Typical Drain-Source On-Resistance

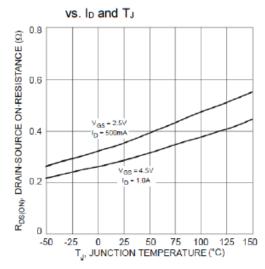


Fig. 6 On-Resistance Variation with TJ

Typical Performance Characteristics(continue)

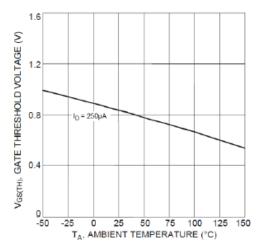
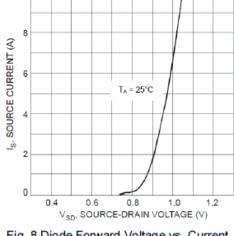



Fig. 7 Gate Threshold Variation vs. TA

10

Fig. 8 Diode Forward Voltage vs. Current

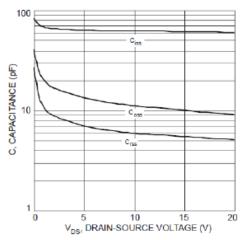


Fig. 9 Typical Capacitance

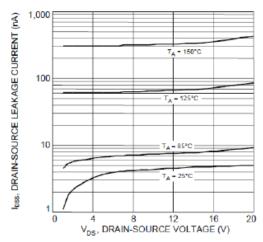
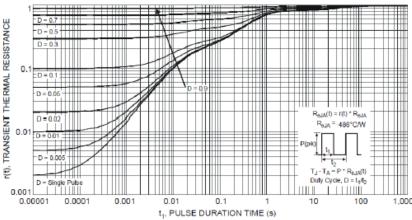
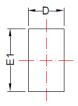
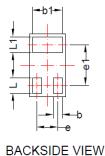


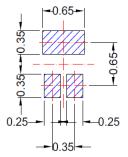
Fig. 10 Typical Drain-Source Leakage Current vs. Drain-Source Voltage

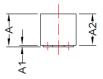



Fig. 11 Transient Thermal Response



Package Dimension:


DFN1006-3L


Package Dimension

Recommended Land Pattern

	Dimensions					
Cumbal	Millimeters		Inches			
Symbol	Min	Max	Min	Max		
Α	0.45	0.60	0.018	0.024		
A 1	0.00	0.05	0.000	0.002		
A2	0.40	0.60	0.016	0.024		
b	0.10	0.20	0.004	0.008		
b1	0.45	0.55	0.018	0.022		
D	0.55	0.65	0.022	0.026		
E1	0.95	1.05	0.037	0.041		
е	0.35BSC		0.014BSC			
e1	0.65BSC		0.026BSC			
L	0.20	0.30	0.008	0.012		
L1	0.20	0.30	0.008	0.012		

NOTF:

DIMENSION D AND E1 DO NOT INCLUDE MOLD FLASH, TIE BAR BURRS, GATE BURRS, AND INTERLEAD FLASH, NOT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

Email:amy@lfc-semi.com www.lfc-semi.com

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.