

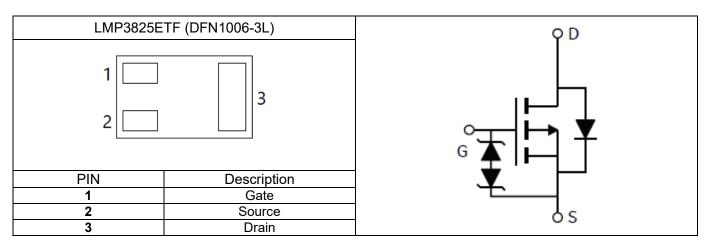
LMP3825ETF 30V P-Channel MOSFET

Features

- -30V/-0.5A, $R_{DS(ON)}$ <2500m Ω @ V_{GS} =-4.5V
- -30V/-0.2A, $R_{DS(ON)} < 2900 \text{m} \Omega @V_{GS} = -2.5V$
- -30V/-0.1A, R_{DS(ON)}<5000mΩ@V_{GS}=-1.8V
- Low-Voltage Operation
- High-Speed Circuits
- ESD Protection
- DFN1006-3L package design

Product Description

LMP3825ETF, P-Channel enhancement mode MOSFET,


uses Advanced Trench Technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge.

These devices are particularly suited for low voltage power management, such as smart phone and notebook computer, and low in-line power loss are needed in commercial industrial surface mount applications.

Applications

- Drivers, Relays, Solenoids, Lamps, Hammers
- Battery Operated Systems
- Power Supply Converter Circuits
- Load/Power Switching Smart Phones, Pagers

Pin Configuration

Ordering Information

Ordering Information					
Part Number	P/N	PKG code	Pb Free code	Package	Quantity
LMP3825ETF	LMP3825E	Т	F	DFN1006-3L	10000

Marking Information

Marking Information				
Part Marking	Part Number	LFC code		
5XWM	5	XWM		

Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Typical	Unit		
V _{DSS}	Drain-Source Voltage		-30	V	
V _{GSS}	Gate-Source Voltage	e-Source Voltage		V	
ID	Continuous Drain Current ¹	T _A =25°C	-0.32	Α	
10		T _A =70°C	-0.26] ``	
I _{DM}	Pulsed Drain Current		-1.2	Α	
P _D	Power Dissipation ¹	T _A =25°C	0.4	W	
Reja	Thermal Resistance Junction to ambient ¹		315	°C/W	
Reja	Thermal Resistance Junction to ambient ²		160	°C/W	
TJ	Operating Junction Temperature Range		-55 to +150	°C	
T _{STG}	Storage Temperature Range		-55 to +150	°C	

Note1. Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout. Note2. Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

LMP3825ETF 2

Electrical Characteristics

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit.
		Static			•	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =-250uA	-30			V
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =-250uA	-0.4		-1.0	
Igss	Gate Leakage Current	V _{DS} =0V, V _{GS} =±8V			±10	uA
IDSS	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	uA
R _{DS(on)}	Drain-Source On-Resistance	V _{GS} =-4.5V, I _D =-0.5A		1.5	2.5	Ω
T CDO(OII)	Brain Source on Noticians	V _{GS} =-2.5V, I _D =-0.2A		1.9	2.9	
		V _{GS} =-1.8V, I _D =-0.1A		2.4	5.0	1
g FS	Forward Transconductance	V _{DS} =-10V, I _D =-0.5A		960		mS
V _{SD}	Diode Forward Voltage	Is=-0.5A, V _{GS} =0V			1.3	V
		Dynamic		•	•	
Q_g	Total Gate Charge	V _{DS} =-15V, V _{GS} =-4.5V, I _D =-1A		1.0		nC
Q_{gs}	Gate-Source Charge	V _{DS} =-15V, V _{GS} =-8V, I _D =-		0.2		
Q_{gd}	Gate-Drain Charge	1A		0.1		
Ciss	Input Capacitance	V _{DS} =-15V, V _{GS} =0V,		54		pF
Coss	Output Capacitance	f=1MHz		10. 9] "
Crss	Reverse Transfer Capacitance			5.8		
t _{d(on}	Turn-On Time	V _{DD} =-10V, R _L =47Ω, I _D ≡- 0.2A, V _{GEN} =-4.5V,		3.8		ns
t _r		$R_G=10\Omega$		11		
$t_{\text{d(off)}}$	Turn-Off Time			45		
t f				20		

Typical Performance Characteristics

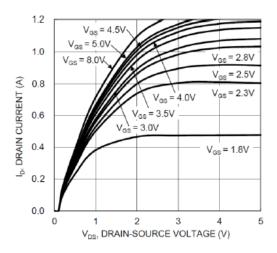


Fig. 1 Typical Output Characteristics

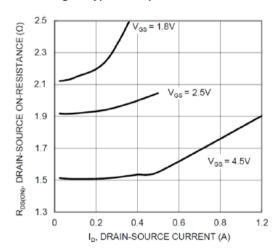


Fig. 3 Typical On-Resistance vs. In and Vos

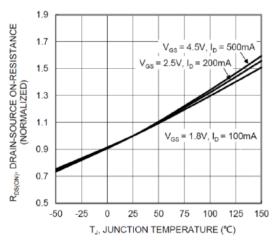


Fig. 5 On-Resistance Variation with T_J

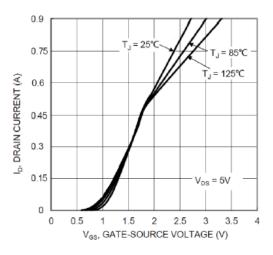


Fig. 2 Typical Transfer Characteristics

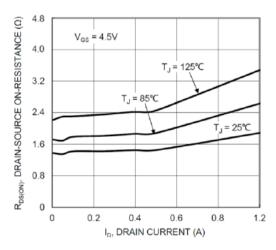


Fig. 4 Typical Drain-Source On-Resistance vs. I_D and T_J

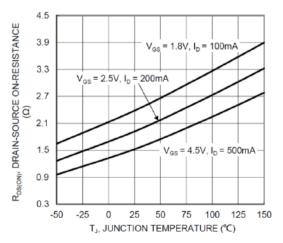
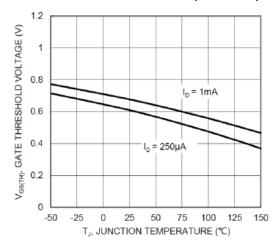



Fig. 6 On-Resistance Variation with T_J

Typical Performance Characteristics(continue)

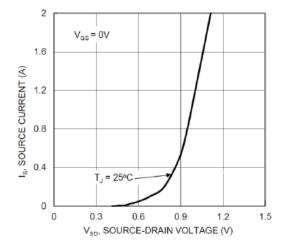
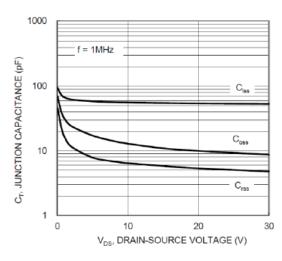



Fig. 7 Gate Threshold Variation vs. TA

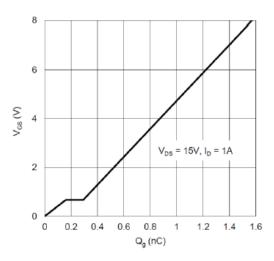
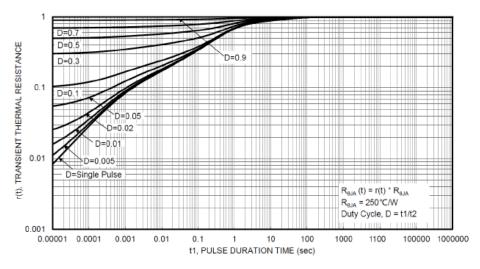
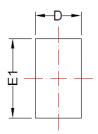
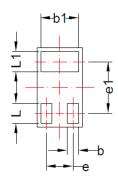
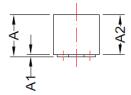


Fig. 9 Typical Capacitance

Fig. 10 Gate Charge


Fig. 11 Transient Thermal Response


Package Dimension:

DFN1006-3L

BACKSIDE VIEW

DIMENSION D AND E1 DO NOT INCLUDE MOLD FLASH, TIE BAR BURRS , GATE BURRS , AND INTERLEAD FLASH, NOT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

		Dimension	ns		
	Millimeters		Inch	es	
SYMBOL	MIN	MAX	MIN	MAX	
Α	0.45	0.60	0.018	0.024	
A1	0.00	0.05	0.000	0.002	
A2	0.40	0.60	0.016	0.024	
b	0.10	0.20	0.004	0.008	
b1	0.45	0.55	0.018	0.022	
D	0.55	0.65	0.022	0.026	
E1	0.95	1.05	0.037	0.041	
е	0.35 BSC		0.014 BSC		
e1	0.65 BSC				
L	0.2	0.3	0.008	0.012	
L1	0.2	0.3	0.008	0.012	

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.