

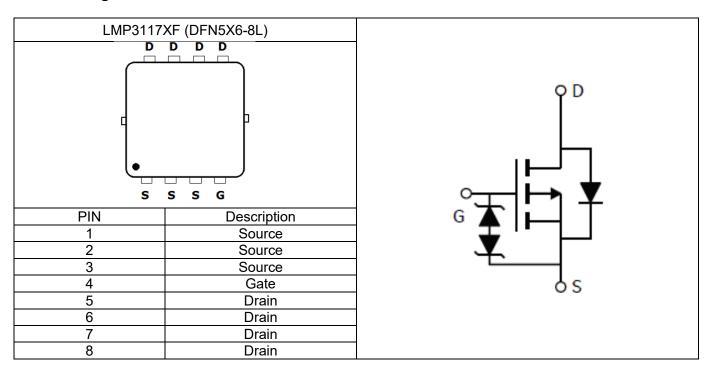
LMP3117XF 30V P-Channel MOSFET

Features

- -30V/-42A, $R_{DS(ON)}$ =14.5m Ω @ V_{GS} =-10V
- Fast switching
- Suit for -4.5V Gate Drive Applications
- Green Device Available
- DFN5X6-8L package design

Product Description

These P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been


especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

These devices are well suited for high efficiency fast switching applications..

Applications

- MB / VGA / Vcore
- POL Applications
- Load Switch
- LED Application

Pin Configuration

Ordering Information

Ordering Information						
Part Number	P/N	PKG code	Pb Free code	Package	Quantity	
LMP3117XF	LMP3117	Х	F	DFN5X6-8L	3000	

Marking Information

Marking Information					
Part Marking	Part Number	LFC code			
3117XF	3117XF	XWMMMM			
XWMMMM	011770	XVVIVIIVIIVIIVI			

Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Parameter		Unit	
$V_{ extsf{DS}}$	Drain-Source Voltage	Drain-Source Voltage		V	
V_{GS}	Gate-Source Voltage		±25	V	
I _D	Continuous Drain Current	TC=25°C	-42	^	
	Continuous Drain Current	TC=100℃	-27	A	
I _{DM}	Pulsed Drain Current		-140	Α	
П	Dawer Dissipation	TC=25°C	42	W	
P _D	Power Dissipation	TC=100℃	17	VV	
TJ	Operating Junction Temperature	Operating Junction Temperature			
T _{STG}	Storage Temperature Range	Storage Temperature Range		$^{\circ}\!\mathbb{C}$	
$R_{\theta JA}$	Thermal Resistance-Junction to	Thermal Resistance-Junction to Ambient		°C/W	
$R_{ heta JC}$	Thermal Resistance-Junction to	Thermal Resistance-Junction to Case		°C/W	

Electrical Characteristics

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
-		Static	•		•	•	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =-250uA	-30				
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =-250uA	-1.2	-1.6	-2.5	•	
I_{GSS}	Gate Leakage Current	V _{DS} =0V, V _{GS} =±25V			±100	uA	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-30V, V _{GS} =0V			-1	uA	
	Drain-Source On- Resistance	V _{GS} =-10V, I _D =-10A		11.9	14.5	mΩ	
R _{DS(on)}		V _{GS} =-4.5V, I _D =-6A		19	23		
V _{SD}	Diode Forward Voltage	I _S =-1A, V _{GS} =0V			-1	V	
	·	Dynamic		•	•	•	
Qg	Total Gate Charge			22		nC	
Qgs	Gate-Source Charge	V _{DS} =-15V, V _{GS} =-4.5V,		8.7			
Q _{gd}	Gate-Drain Charge	I _D =-15A		7.2			
C _{iss}	Input Capacitance			2215			
Coss	Output Capacitance	V _{DS} =-15V, V _{GS} =0V		310		pF	
C _{rss}	Reverse Transfer Capacitance	f=1MHz		237		1 μ	
t _{d(on)}		V _{DD} =-15V, I _D =-15A		8			
t _r	Turn-On Time			73.67			
t _{d(off)}		V _{GS} =-10V, R _G =3.3Ω		61.8		ns	
t _f	Turn-Off Time			24.4		1	

Note

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2oz copper.
- 2. The EAS data shows Max. rating . The test condition is VDD=-20V, VGS=-10V, L=0.1mH, IAS=-19A.
- 3. The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$.

Typical Performance Characteristics

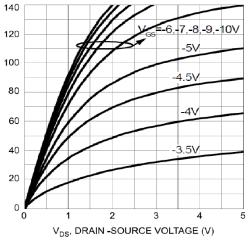


Figure 1. Output Characteristics

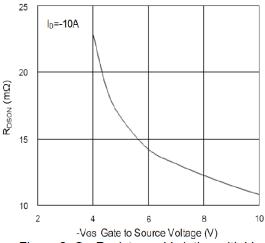


Figure 2. On-Resistance Variation with VGS

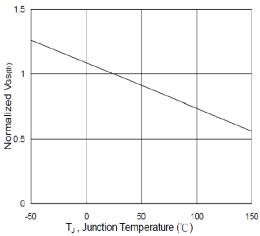


Figure 3. Normalized $V_{\text{GS(th)}}$ vs. T_J

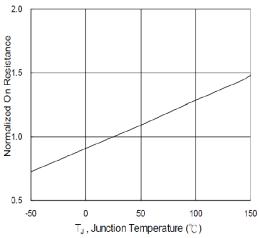


Figure 4. Normalized RDSON vs. TJ

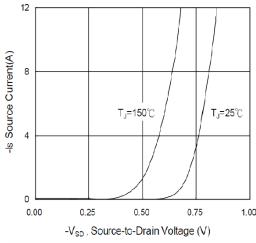


Figure 5. Diode Forward Voltage vs. Current

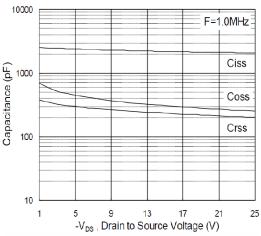
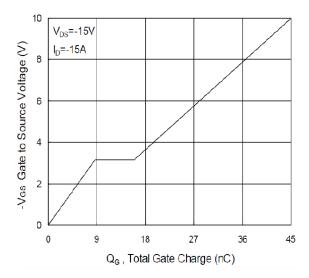



Figure 6. Capacitance

Typical Performance Characteristics(continue)

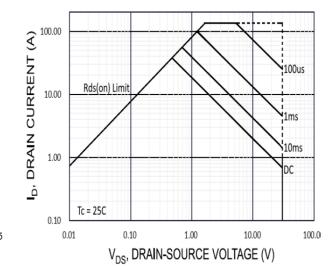
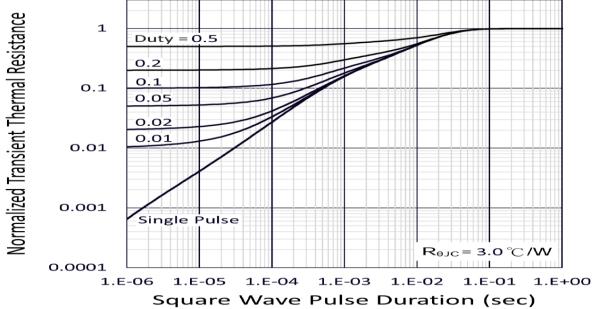
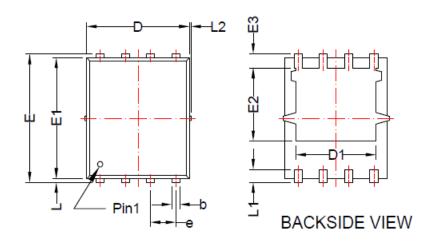
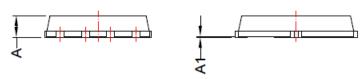


Figure 7. Gate Charge Waveform

Figure 8. Maximum Safe Operating Area


Figure 9. Normalized Transient Thermal Resistance

Package Dimension:

DFN5X6-8L

DIMENSION D AND E1 DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL HOT EXCEED 0.5mm PER INTERLEAD FLASH OR PROTRUSIOB SHALL NOT EXCEED 0.5mm PER SIDE

Dimensions					
Symbol	Millimeters		Inches		
	Min	Max	Min	Max	
Α	0.80	1.20	0.031	0.047	
A1	0.00	0.05	0.000	0.002	
b	0.25	0.51	0.010	0.020	
С	0.20	0.35	0.008	0.014	
D	4.90	5.40	0.193	0.213	
D1	3.40	4.60	0.134	0.181	
е	1.27 BSC		0.050 BSC		
L	0.1	0.25	0.004	0.010	
L1	0.45	0.75	0.018	0.030	
L2		0.15		0.006	

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.